Essential

Maths Facts

for
Year 6

This table shows the heights of three mountains.

Mountain	Height in metres
Mount Everest	8,848
Mount Kilimanjaro	5,895
Ben Nevis	1,344

How much higher is Mount Everest than the combined height of the other two mountains?

Simon and Nick want two batteries each.
They buy a pack of four and share the cost equally.
How much does each pay?

4 This table shows the number of people living in various towns in England.

Town	Population
Bedford	82,448
Carlton	48,493
Dover	34,087
Formby	24,478
Telford	166,640

What is the total of the numbers of people living in Formby and in Telford?

What is the difference between the numbers of people living in Bedford and in Dover?

4 Operations Key Language

\pm	-	
Sum	Less	
Find the sum of	Less than	
Plus	Leave	
Total	Difference	
Find the total of	Find the difference	
Add	What is the difference be-	
More than	tween	
Make	Minus	
Addition	Subtract	
Altogether	Take away	
Together	Take from	
And	Fewer	
More than	Left	
Total	How much more	
Cobined		
X	\div	=
Multiply	Divide	Equal to
product	Divided by	Equals
Groups of	Divided into	The same as
Lots of	Divided equally	
Multiplication	Share equally	
Multiplied by	Share	
Times	Equal groups of	
Multiple of Repeated addition		

Times Tables
A strong knowledge of your times tables and their related division facts is essential for maths. They should be practised regularly and should be learnt out of order for easy re-call. These can be practised via
TT Rockstars.

X	1	2	3	4	5	6	7	8	9	10	11	12
1	1	2	3	4	5	6	7	8	9	10	11	12
2	2	4	6	8	10	12	14	16	18	20	22	24
3	3	6	9	12	15	18	21	24	27	30	33	36
4	4	8	12	16	20	24	28	32	36	40	44	48
5	5	10	15	20	25	30	35	40	45	50	55	60
6	6	12	18	24	30	36	42	48	54	60	66	72
7	7	14	21	28	35	42	49	56	63	70	77	84
8	8	16	24	32	40	48	56	64	72	80	88	96
9	9	18	27	36	45	54	63	72	81	90	99	108
10	10	20	30	40	50	60	70	80	90	100	110	120
11	11	22	33	44	55	66	77	88	99	110	121	132
12	12	24	36	48	60	72	84	96	108	120	132	144

Learning by rote is a popular way for children to recall their times table. The following link is on Youtube and has been popular with our Year 6 children.
https://www.youtube.com/watch?v=jf2BHuSbt Y
Alternatively, type in 'Year 3 Rolling Numbers.'

Here is a diagram for sorting numbers.

```
Write these three numbers in the correct boxes.
```

You may not need to use all of the boxes.
$9 \quad 17 \quad 20$

Write all the numbers between 50 and 100 that are factors of 180

1 Here is a diagram for sorting numbers.
Write one number in each bor
One is done for you.

Factors and Multiples

Factors are all the numbers which, when multiplied together in pairs, produce the original number. i.e.

The factors of 12 are:
1 and $12(1 \times 12=12)$
2 and 6 ($2 \times 6=12$)
3 and $4(3 \times 4=12)$
Numbers which have only one pair of factors (1 and itself) are known as prime numbers: 17 is prime number because the only pair of factors are 1 and 17 .

Common factors-these are numbers which are factors for two different numbers i.e. the common factors of 12 and 20 are 1,2 and 4 because these number divide exactly into both original numbers. This is important when working with fractions.

Prime factors are the factors of a given number which, when taken to its full extent, are prime. They can be shown as a prime factor tree and, when all of them are multiplied together, they will produce the original number.

Tip:
Factors are always the number or smaller Multiples are always the number or bigger.

Multiples

Multiples are effectively extended times tables. The multiples of any number are the numbers into which the original number can be divided exactly. For example:

The multiples of 2 are $2,4,6,8,10,12,14,16,18,20,22,24,26,28,30$ and any other number which can be divided by 2 .

The multiples of 5 are $5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80$ and any other number which can be divided by 5 .

Common multiples are the multiples which apply to two different numbers. I.E. the common multiples for 3 and 4 below 30 are:

312 and 24 as these are multiples for both 3 and 4.

Example SATs questions

The number 20 goes in two of the squares of this multipication gid.

Tick (\checkmark) the two squares where 20 goes.

x	1	2	3	4	5
1					
2					
3					
4					
5					

Here is a number pyramid.
The number in a box is the product of the two numbers below it.

Write the missing numbers.

$0.9 \times 200=$

A group of friends earns $£ 80$ by washing cars.
$581 \div 7=$
They share the money equally.
They get $£ 16$ each.

How many friends are in the group?

Time

Examples of SATs questions

Simple Facts

- 60 seconds in a minute
- 60 minutes in an hour
- $\quad 24$ hours in a day (12 hours in half a day)
- 7 days a weeks
- 52 weeks in a year
- 4 weeks in a month (roughly)
- 365 days in a year
- $\quad 366$ days in a leap year (once every four years)
- In a leap year February has one additional day.

30 days hath September, April, June and November All the rest have 31, Except for February alone, Which has 28 days clear, And 29 in each leap year.

Months of the Year (in order)

18 A square number and a prime number have a total of 22

What are the two numbers?

22
 number

November
December

Purchasing analogue watch for

 your child can be extremely help-ful for them to learn the time. Often, children can read digital time but cannot convert this knowledge when looking at an analogue clock in their everyday life.

12 Noon / midday $=12.00$
$1 \mathrm{pm}=13.00$
$2 \mathrm{pm}=14.00$
$3 \mathrm{pm}=15.00$
$4 \mathrm{pm}=16.00$
$5 \mathrm{pm}=17.00$
$6 \mathrm{pm}=18.00$
$7 \mathrm{pm}=19.00$
$8 p m=20.00$
$9 \mathrm{pm}=21.00$
$10 \mathrm{pm}=22.00$
$11 \mathrm{pm}=23.00$

Find two square numbers that total 45

Here is a sorting diagram for numbers.
Write a number less than 100 in each space.

	even	not even
a square number		
not a square number		

Square numbers are the result when a root number is multiplied by itself i.e. 5 squared $\left(5^{2}\right)$ is $5 \times 5=25.25$ is a square number.

Cube numbers are the result of a root number being multiplied byt itself and the answer being multiplied byt the root number again i.e 5 cubed $\left(5^{3}\right)$ is $5 \times 5 \times 5=125$

Root number	Squared	Cubed
1	1	1
2	4	8
3	9	27
4	16	64
5	25	125
6	36	216
7	49	343
8	64	512
9	81	729
10	100	1000
11	121	1331
12	144	1728

7 Write the missing numbers.
60 months $=\square$ years
2 hours $=\square$ days
84 days $=$ \square weeks

Prime numbers are those numbers which only have 1 and itself as factors.
2 is the only even prime number.
1 is not a prime number.
Prime Numbers are infinite but the primes below 100 are:

2, 3, 5, 7,
11, 13, 17,
23,
31, 37,
41, 43, 47,
53, 59,
61, 67,
71, 73, 79,
What is 444 minutes in hours and minutes?
9 Here is part of the bus timetable from Riverdale to Mott Haven.

Riverdale	10:02	10:12	10:31	10:48	How many minutes does it take the $10: 31$ bus from Riverdale to reach Mott Haven?
Kingsbridge	10:11	10:21	10:38	10:55	Mr Evans is at Fordham at 10:30
Fordham	10:28	10:38	10:54	11:11	
Tremont	10:36	10:44	11:00	11:17	What is the earliest time he can reach Tremont on the bus?
Mott Haven	10:53	11:01	11:17	11:34	

83, 89,

Angles

- The angles on a straight line add up to 180°
- The angles around a point add up to 360°
- Internal angles of a triangle add up to 180°
- The angles of a quadrilateral add up to 360°
- Other 2d shapes-for every additional angle add a further 180° (Pentagon, 5 angles $=360^{\circ}+180^{\circ}=540^{\circ}$, hexagon, 6 angles $=$
$540^{\circ}+180^{\circ}=720^{\circ}$, and so on)
The formula ($\mathrm{n}-2$) $\times 180$ can be used to calculate the interior angles of any regular shape ($n=$ the number of sides on the shape)

Acute angle $=$ less than 90°

Right angle $=90^{\circ}$

Obtuse angle $=$ greater than 90° but Reflex angle $=$ greater than 180° less than 180°

Half turn or angle on a straight line

Full turn

Full turn

to the nearest 100	
\begin{tabular}{r\|}	
\hline	
\end{tabular}rounded to the nearest hundred	
316	300
3162	
31628	
316281	

Amy chooses two of these cards.

She adds the numbers on her two cards together.
She rounds the resuil to the nearest 10
Her answer is 60

Which two cards did Any choosei

Write in the missing numbers.

Number	Rounded to the nearest whole number
5.05	
5.55	
4.45	
4.54	

Rounding

Rounding is skill which can be extremely useful when estimating answers to complex calculations but it also a skill tested within SATs papers.

TH	H	T	U	. ths
2	4	6	5	. 9

To round to the nearest ten first we must look at the tens column. We have 6 tens so we know the number will either round up to 2470 or down to 2460 . Next we must look in the units column. If it is 5 or more then we round up, if it is 4 or less we round down. As 5 is in the units, we round up to 2470 .

This procedure follows for rounding to nearest thousand, hundred, unit, or tenth. The only thing that alters is the column we look in so:
2465.9 rounded is:

2000-to the nearest thousand
2500-to the nearest hundred
2470-to the nearest ten
2455-to the nearest unit

Rounding to the nearest tenth/hundredth.
Example:
3.456 rounded to 2 decimal places/nearest hundredth $=3.46$
3.456 round to 1 decimal place/nearest tenth $=3.5$

Example SATs angles questions:

7 Here are five angles marked on a grid of squares.

Write the letters of the angles that are obtuse.

Write the letters of the angles that are acute.
15
A shaded isosceles triangle is drawn inside a rectangle.

Regular shapes - shapes which have equal length sides and equal angles Irregular Shapes—shapes which have unequal length sides and unequal angles.

-8 sides

Regular Irregular

Nonagon-9 sides Regulaar Irregular

Quadrilaterals-4 sided shapes with straight lines
Square
Oblong/Rectangle

Kite

Parallelogram

Trapezium

Use four of the cards to complete these calculations.

$2,345 \times 1,000=$

Circle

TM	M	HTH	TTH	TH	H	T	U		ths	hths	thths
Tens of Millions	Millions	Hun- dred of Thou- sands	Tens of Thou- sands	Thou- sands	Hun- dred	Tens	Units/ Ones	Dec ima 1 Poi $n t$	Tenths	Hun- dredths	thou- sandths
4	2	7	5	6	4	6	2	.	5	4	3

Forty-Two million, seven hundred and fifty-six thousand four hundred and sixty-two point five four three
Multiplying by 10, 100 and 1000-count the zeroes then move the digits the same number of places to the left. The decimal point DOES NOT MOVE it is a fixed point. Gaps are plugged with a zero (you do not ADD a zero-ever!).

					4	5	3	\cdot	6		
X10				4	5	3	6				
$X 100$			4	5	3	6	0				
$\times 1000$		4	5	3	6	0	0				

Dividing by 10, 100 and 1000-count the zeroes the move the digits the same number of places to the right. The decimal point DOES NOT MOVE it is a fixed point. Gaps are plugged with a zero.

					4	5	3				
$\div 10$						4	5		3		
$\div 100$							4	.	5	3	
$\div 100$							0		4	5	3

These facts can then be used to help with other calculations i.e. 50×70

$$
5 \times 7=35
$$

$$
50 \times 7=350
$$

$$
50 \times 70=3500
$$

Circumference-the distance around the outside of the circle (it's perimeter).

Diameter-the width of the circle crossing the centre from one side to the other.

Radius-the distance from the centre of the circle to

Example SATs questions

Match each shape to the correct name. One has been done for you

Each of these four squares has
been cut into two new shapes.

[^0]A bicycle wheel has a diameter of 64 cm .

Cube
Cuboid
Cylinder
Cone

Triangular Based Pyramid

Hexagonal prism

Square based amid

Sphere

Triangular Prism pyramid

Hemisphere

Octahedron

Vertex-the 'corners' of the shape.

Face-the side of the shape Edge-the joint of two faces

$$
3^{2}+10=\quad 50+(36 \div 6)=
$$

$$
20-4 \times 2=
$$

Write one number from each circle to make this calculation correct.

Write the correct sign $>$, < or $=$ in each of the following.
$3 \times(4+5)$ \square $(3 \times 4)+5$
$(10 \times 4) \div 2$ \square $10 \times(4 \div 2)$

BODMAS

Example CATs questions

BODMAS is the order in which operations within a calculation must be completed.

B $=$ Brackets
O/I= Orders (also known as powers)/ Indices
D = Division
$\mathrm{M}=$ Multiplication
A = Addition
$S=$ Subtraction
$7^{2} \times 2-(6+3)=$
Brackets first -6+3=9
Orders/indices second- $7^{2}=49$
Division/Multiplication next -49 $\times 2=98$
Addition/Subtraction last -98-9=89

You might not see all the BODMAS steps in one questions so you just need to figure which step must come first, for example:
$60-42 \div 6=$
If completed in left to right order the answer would be 3-this is INCORRECT!

Under BODMAS $42 \div 6$ must be completed first $(42 \div 6=7)$ then this answer taken away from 60 so the CORRECT answer is 53.

Here are diagrams of some 3-D shapes.
 on opposite faces.

Cube

Square-based pyramid

Triangular prism

Triangular-based pyramid

Emily has 6 cubes.

She sticks them together to make this model.

She paints the sides of the model grey all the way round.
She leaves the top and the bottom of the model white.

[^1] painted grey?

Fractions, Decimals and Percentages

Fractions, decimals and percentages can be easily converted through the methods we have taught you at school but some of them need to be remembered to help with speed during tests. This is especially helpful when ordering a mixture of fractions, decimals and percentages.

Fraction	Decimal	Percentage
$1 / 2$	0.5	50%
$1 / 4$	0.25	25%
$3 / 4$	0.75	75%
$1 / 10$	0.1	10%
$1 / 5$	0.2	20%
$3 / 10$	0.3	30%
$2 / 5$	0.4	40%
$3 / 5$	0.6	60%
$7 / 10$	0.7	70%
$4 / 5$	0.8	80%
$9 / 10$	0.9	90%
$1 / 100$	0.01	1%
$2 / 100$	0.02	2%
$3 / 100$	0.03	3%
$4 / 100$	0.04	4%
$5 / 100$	0.05	5%

Examples of SATs questions

The perimeter of this rectangle is 50 centimetres.

Here is a grid of regular hexagons.

The shaded shape has an area of 3 hexagons and a perimeter of 14 cm .

Draw another shape on the grid which has

an area of 4 hexagons and a perimeter of 14 cm .

Area, Perimeter and Volume
Area:
Area is the amount of space covered by a 2 d shape. Area of a rectilinear shape (square, oblong) is calculated by the formula length x width. The area of a compound shape can be calculated by splitting the shape into its constituent parts, calculating their area and then adding them back together.

Assuming these are in $\mathrm{cm} 3 \mathrm{~cm} \times 5 \mathrm{~cm}=15 \mathrm{~cm}^{2}$

Area of a triangle is calculated by the formula (base x height) $\div 2$

$$
(12 \mathrm{~cm} \times 20 \mathrm{~cm}) \div 2=120 \mathrm{~cm}^{2}
$$

Area of a parallelogram is calculated by the formula base x height.

Perimeter is the total outside length of sides of a shape added together

So the perimeter for this shape would be 16 cm as the two longer sides are 5 cm and the two shorter sides are 3 cm .

Volume is the internal space of a 3 d object (i.e. how much it could contain). It is calculated by the formula length x width x height.

So if $h=3 \mathrm{~cm}$, width $=2 \mathrm{~cm}$ and $\mathrm{I}=6 \mathrm{~cm}$ the volume

Example SATs questions

17 In each box, circle the number that is greater.

Put a tick (\checkmark) in each row to complete this table.
One has been done for you.

	greater than $\frac{1}{2}$	less than $\frac{1}{2}$
0.9	\checkmark	
0.06		
$\frac{11}{20}$		
0.21		

20

 Adam says, 0.25 is smaller than $\frac{2}{5}$Explain why he is correct.

When simplifying fractions, find a common factor for the numerator and denominator then (to simplify as far as possible) use:
"Whatever I do to the bottom, I must do to the top".
When converting an improper fraction to mixed number divide the denominator into the numerator. The whole number will give you the 'whole' part of the mixed number, any remainders should be put over the original denominator as a fraction (and then simplified if needed).

Adding or subtracting fractions-the denominators MUST be the same. Convert using common multiples and "Whatever I do to the bottom, I must do to the top" .

Dividing fractions—remember 'Keep, change, flip' - KCF

Multiplying fractions by whole numbers - put a fraction line and 1 underneath the whole number and complete the calcu-lation-multiply the numerators then multiply the denominators

When ordering fractions-convert all so they have the same denominator to make it easy to put them in order but remember to write the original fraction in the answer boxes.

At the end of a film, the year is given in Roman numerals.

The End

MMVI

Write the year MMVI in figures.

Here is a number written in Roman numerals.
cxv

Write the number in figures.

Arabic Numeral Roman Numeral

1	I
2	II
3	III
4	IV
5	V
6	VI
7	VII
8	VIII
9	IX
10	X
20	XX
30	XXX
40	XL
50	L
60	LX
70	LXX
80	LXXX
90	XC
100	C
500	D
1000	M

Circle the fraction that is greater than $\frac{1}{2}$ but less than $\frac{3}{4}$

$$
\frac{2}{5} \quad \frac{1}{3}
$$

$$
\frac{1}{3} \quad \frac{5}{8}
$$

$$
\frac{5}{8}
$$

$$
\frac{4}{6} \times \frac{3}{5}=
$$

$$
\frac{5}{8} \div 2=
$$

Two of the fractions below are equivalent.
Circle them.
$\frac{2}{3} \quad \frac{6}{10}$ $\frac{9}{12}$ $\frac{10}{15}$ $\frac{16}{20}$

What fraction of the whole circle is not shaded?

Write these fractions in order of size starting with the smallest.

Units of Measurement

Metric

Length/Distance	Weight/Mass	Volume
$1 \mathrm{~km}=1000 \mathrm{~m}$	1 tonne $=1000 \mathrm{~kg}$	$1 \mathrm{~L}=1000 \mathrm{ml}$
$1 \mathrm{~m}=100 \mathrm{~cm}$	$1 \mathrm{~kg}=1000 \mathrm{~g}$	$1 \mathrm{~L}=100 \mathrm{cl}$
$1 \mathrm{~cm}=10 \mathrm{~mm}$		$1 \mathrm{cl}=10 \mathrm{ml}$
$1 \mathrm{~m}=1000 \mathrm{~mm}$		
$1 / 2 \mathrm{~km}=500 \mathrm{~m}$	$1 / 2$ tonne $=500 \mathrm{~kg}$	$1 / 2 \mathrm{~L}=500 \mathrm{ml}$
$1 / 2 \mathrm{~m}=50 \mathrm{~cm}$	$1 / 2 \mathrm{~kg}=500 \mathrm{~g}$	$3 / 4 \mathrm{~L}=750 \mathrm{ml}$
$1 / 2 / \mathrm{cm}=5 \mathrm{~mm}$	$3 / 4 \mathrm{~kg}=750 \mathrm{~g}$	$1 / 4 \mathrm{~L}=250 \mathrm{ml}$
$3 / 4 \mathrm{~km}=750 \mathrm{~m}$	$1 / 4 \mathrm{~kg}=250 \mathrm{~g}$	
$3 / 4 \mathrm{~m}=75 \mathrm{~cm}$		
$3 / 4 \mathrm{~cm}=7.5 \mathrm{~mm}$		
$1 / 4 / \mathrm{km}=250 \mathrm{~m}$		
$1 / 4 \mathrm{~m}=25 \mathrm{~cm}$		
$1 / 4 \mathrm{~cm}=2.5 \mathrm{~mm}$		

Imperial
$\begin{array}{ll}1 \text { mile }=1760 \text { yards } & 1 \text { stone }=14 \text { pounds }(\mathrm{lb}) \quad 1 \text { gallon }=8 \text { pints } \\ 1 \text { yard }=3 \text { feet } & 1 \mathrm{lb}=16 \text { ounces (oz) }\end{array}$

1 foot = 12 inches

Metric/Imperial conversion (rough)
$2.5 \mathrm{~cm}=1$ inch
$8 \mathrm{~km}=5$ miles
$500 \mathrm{~g}=1 \mathrm{lb}$

Example SATs questions

A bottle contains 568 millilitres of milk.

The three parcels weigh 800 grams altogether.

$$
\text { Parcel A weighs } 250 \mathrm{~g} \text {. }
$$

How much does parcel B weigh?

[^0]: Write the letters of all the new shapes that are hexagons.

[^1]: How many of the cubes in the model have exactly two faces

